Aldosterone acutely stimulates NCC activity via a SPAK-mediated pathway.

نویسندگان

  • Benjamin Ko
  • Abinash C Mistry
  • Lauren Hanson
  • Rickta Mallick
  • Brandi M Wynne
  • Tiffany L Thai
  • James L Bailey
  • Janet D Klein
  • Robert S Hoover
چکیده

Hypertension is a leading cause of morbidity and mortality worldwide, and disordered sodium balance has long been implicated in its pathogenesis. Aldosterone is perhaps the key regulator of sodium balance and thus blood pressure. The sodium chloride cotransporter (NCC) in the distal convoluted tubule of the kidney is a major site of sodium reabsorption and plays a key role in blood pressure regulation. Chronic exposure to aldosterone increases NCC protein expression and function. However, more acute effects of aldosterone on NCC are unknown. In our salt-abundant modern society where chronic salt deprivation is rare, understanding the acute effects of aldosterone is critical. Here, we examined the acute effects (12-36 h) of aldosterone on NCC in the rodent kidney and in a mouse distal convoluted tubule cell line. Studies demonstrated that aldosterone acutely stimulated NCC activity and phosphorylation without affecting total NCC abundance or surface expression. This effect was dependent upon the presence of the mineralocorticoid receptor and serum- and glucocorticoid-regulated kinase 1 (SGK1). Furthermore, STE20/SPS-1-related proline/alanine-rich kinase (SPAK) phosphorylation also increased, and gene silencing of SPAK eliminated the effect of aldosterone on NCC activity. Aldosterone administration via a minipump in adrenalectomized rodents confirmed an increase in NCC phosphorylation without a change in NCC total protein. These data indicate that acute aldosterone-induced SPAK-dependent phosphorylation of NCC increases individual transporter activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alternatively spliced proline-rich cassettes link WNK1 to aldosterone action.

The thiazide-sensitive NaCl cotransporter (NCC) is important for renal salt handling and blood-pressure homeostasis. The canonical NCC-activating pathway consists of With-No-Lysine (WNK) kinases and their downstream effector kinases SPAK and OSR1, which phosphorylate NCC directly. The upstream mechanisms that connect physiological stimuli to this system remain obscure. Here, we have shown that ...

متن کامل

Chronic Metabolic Acidosis Activates Renal Tubular Sodium Chloride Cotransporter through Angiotension II-dependent WNK4-SPAK Phosphorylation Pathway

The mechanism by which chronic metabolic acidosis (CMA) regulates sodium (Na(+))-chloride (Cl(-)) cotransporter (NCC) in the renal distal convoluted tubules remains unexplored. We examined the role of STE20/SPS1-related proline/alanine-rich kinase (SPAK) and with-no-lysine kinase 4 (WNK4) on expression of NCC in mouse models of CMA. CMA was induced by NH4Cl in wild type mice (WTA mice), SPAK, a...

متن کامل

Disruption of the with no lysine kinase–STE20-proline alanine-rich kinase pathway reduces the hypertension induced by angiotensin II

OBJECTIVE The hypertensive effect of angiotensin II (AngII), a peptide hormone, is dependent on its intrarenal actions and the activation of the renal Na-Cl cotransporter (NCC), by AngII requires integrity of the with no lysine kinase/STE20-proline alanine-rich kinase (WNK/SPAK) signaling pathway. Here, we analyzed if the integrity of the WNK/SPAK pathway is required for AngII infusion to induc...

متن کامل

Modulation of NCC activity by low and high K+ intake: insights into the signaling pathways involved

Modulation of Na(+)-Cl(-) cotransporter (NCC) activity is essential to adjust K(+) excretion in the face of changes in dietary K(+) intake. We used previously characterized genetic mouse models to assess the role of Ste20-related proline-alanine-rich kinase (SPAK) and with-no-lysine kinase (WNK)4 in the modulation of NCC by K(+) diets. SPAK knockin and WNK4 knockout mice were placed on normal-,...

متن کامل

K+–Mediated Regulation of Distal Convoluted Tubule Na/Cl Cotransporter Phosphorylation During Angiotensin II–Induced Hypertension

The thiazide-sensitive Na/Cl cotransporter NCC mediates NaCl reabsorption by the distal convoluted tubule (DCT) playing an important role in Na homeostasis and blood pressure regulation. In addition, the DCT is involved in maintaining K homeostasis by controlling the amount of K secreted into the lumen through the apical channel ROMK (renal outer medulla K channel). NH 2 -terminal NCC phosphory...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 305 5  شماره 

صفحات  -

تاریخ انتشار 2013